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Abstract. We perform an analytic semi-classical quantization of the straight QCD string with one
end fixed and a massless quark on the other, in the limits of orbital and radial dominant motion.
Our results well approximate those of the exact numerical semi-classical quantization as well as our
exact numerical canonical quantization.

INTRODUCTION

Linearly rising Regge trajectories are a prediction of both string and scalar confinement
with one (or two) light quark(s). In a QCD string theory with one (or two) light spinless
quark(s), the relation of the energy of the light degrees of freedom,E, to the the angular
momentum and radial quantum numbers,J andn, is well approximated by

E2

(2)πa
’ J+ 2n+

3
2
; (1)

wherea is the tension (linear energy density) of the string. The same relation holds
exactly in scalar confinement, though with a denominator of 2a instead ofπa. We
derive Eq. (1) analytically in semi-classical quantization of a straight string fixed at
one end and with a massless and spinless quark at the other, in the limit of large radial
quantum numbersn. The straight string approximation is an excellent approximation to
the motion of a Nambu-Goto string; string curvature affects the energy and the angular
momentum of the system very little [1]. The semi-classical result will follow from the
evaluation of a single integral when one or both quarks are massless.

DYNAMICS & QUANTIZATION

The energy and angular momentum of the system are its only conserved quantities.
We would like to relate the energy to the angular momentum but the relationship of
the angular momentum to the quark’s transverse velocity (or to its angular velocity) is
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FIGURE 1. (a) Regge plot of angular momentum versus squared energy overπa. The numerical semi-
classical quantized results agree nearly exactly with the exact numerical canonical results. Eq. (1) also
agrees forn J. (b) The configuration of a straight string with a quark on the end is described by the
quark’s positionr , its radial velocity ˙r and its transverse velocityv? .

transcendental and the transverse velocity cannot be eliminated analytically. Despite this
difficulty, we can carry out semi-classical quantization analytically in the limit of large
quantum numbers. This is not an essential limitation as semi-classical quantization is
only valid in this limit.

The energy and angular momentum of the quark–string system, shown in Fig. 1(b), is
well-known and given by [2]

E = Wrγ? + ar
arcsin(v? )

v?
; (2)

J = Wrγ? v? r + ar2

0

@ arcsin(v? )

2v2
?

q
1 v2?
2v?

1

A ; (3)

where

Wr

q
p2

r + m2 =
q

1 v2?
p
~p2+ m2 ; (4)

γ? (1 v2? )
1=2 : (5)

Dimensionless Variables

To simplify the system, it pays to work in dimensionless units. We choose our units
to be those of a system in uniform circular motion. The orbital energy and radius are
E0 =

p
Jπa andr0 = 2

p
J=(πa)respectively. We take the dimensionless energy, radius,
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FIGURE 2. (a) The behavior ofw(ρ)andv? (ρ)for ∆ = 2 and∆ = 0:5. (b)∆ versusn for J = 0;1;2.

and quark radial energy to be given in terms of dimensionless numbers∆, ρ, andw by

E=E0

p
1+ ∆2 ; (6)

r=r0

p
1+ ∆2+ ρ∆ ; (7)

Wr=E0 w : (8)

When∆ = 0 the system is in uniform circular motion and lies along the leading Regge
trajectory. Radial excitation corresponds to∆ > 0.

We can findv? andw as functions ofρ and∆ from Eqs. (2) and (3), made suitably
dimensionless,

w =
q

1 v2?
p

1+ ∆2 2
π

S(v? )
p

1+ ∆2+ ρ∆ ; (9)

1 +
4
π
(v?S(v? ) f(v? ))

hp
1+ ∆2+ ρ∆

i2
;

= 2v?
hp

1+ ∆2+ ρ∆
ip

1+ ∆2 ; (10)

whereS(v? )=
arcsin(v? )

v?
and f(v? )=

1
2v?

S(v? )
q

1 v2? . Figure 2(a) shows the

dependence ofw andv? on ρ for ∆ = 0:5 and∆ = 2:0.

Turning Points

In order to carry out semi-classical quantization, one must know the locations of the
turning points of the classical motion. The turning points are the radii at which the radial
momentum vanishes,pr = 0. For a massless quark, this implies thatw= 0, but because



the quark is massless, the radial velocity need not vanish. The inner turning point occurs
at ρ = 1 and the outer turning point occurs in the interval

π
2

1 ρ+ 1 : (11)

The lower limit is reached for large∆ and the upper limit for∆ = 0. The turning points
for ∆ = 0:5 and∆ = 2:0 can be seen in Fig. 2(a).

Semi-Classical Quantization

The Bohr-Sommerfeld quantization condition with the Langer correction [3] is

Z r+

r
pr dr = π n+

1
2

; n= 0;1;2;:::; (12)

where the radial momentum is a function of radius and shifted angular momentum,
pr = pr(r;J+

1
2). In the case of a massless quark, we define the integral

I(∆)=
4
π

Z ρ+ (∆)

1
dρ w(ρ;∆); (13)

which is proportional to the integral in Eq. (12). The spectrum is computed from the
relation

∆I(∆)=

 
2n+ 1

J+ 1
2

!

; (14)

once∆ is expressed in terms of the energy through Eq. (6).

Radial Dominant Motion

Semi-classical quantization should become exact in the limit ofn J. For smallJ,
largen implies large∆, as can be seen from Fig. 2(b), which shows the dependence of∆
onn for small values ofJ. This is the radial dominant regime.

Large∆ implies eitherρ = 1, orv? ! 0 and

w(ρ;∆) ! ∆ 1
2
π
(1+ ρ) ) ρ+ =

π
2

1 : (15)

In the limit of large∆, the integralI(∆)in Eq. (13) becomes simply∆.

I(∆)’
Z π

2 1

1
dρ w(ρ;∆)= ∆ : (16)



The quantization condition (14) becomes

∆I(∆)= ∆2 =

 
E2

(J+ 1
2)πa

1

!

=

 
2n+ 1

J+ 1
2

!

; (17)

which is the same as Eq. (1).

Angular Dominant Motion

In the regime of radial dominant motion (J n), ∆ is small. Small∆ implies that the
upper turning point isρ+ ’ 1. In this approximation we can also find an analytical form
for I(∆);

I(∆) =
4
π

Z + 1

1
dρ w(ρ;∆)=

8
21

3
π

5=6 Γ(2
3)

Γ(7
6)

∆4=3

’ 1:3367∆4=3 : (18)

Numerical evaluation ofI(∆)shows that Eq. (18) is a good approximation for∆ 0:4.
For larger∆ the radial dominant result of∆ is a better approximation.

CONCLUSIONS

We have performed a semi-classical quantization of the straight QCD string with mass-
less and spinless quarks on the end and found an approximate spectrum that is similar in
form to that of scalar confinement, though with a different Regge slope. In performing
the quantization it is useful to use dimensionless variables related in an algebraic way to
the energy and angular momentum.

In the case of massless quarks, a single integral functionI(∆)determines the spectrum.
In the regime of radial dominant motion, this integral can be easily evaluated, and it is
simply ∆. This leads to the simple relation (1) that agrees well in the radial dominant
regime with a full numerical canonical quantization of the system as well as to the exact
numerical semi-classical quantization, as can be seen in Fig. 1(a).
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